skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hanson, Lindsey A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We report a new class of hydrophobic polymer ligands with quaternary ammonium head groups for surface modification of noble metal nanoparticles (NPs). Quaternary ammonium ligands bind NPs through non‐covalent electrostatic interactions, producing polymer‐grafted NPs with high colloidal and chemical stability. These polymers having charged head groups offer powerful strategies to tailor the structure and function of metal‐electrolyte interfaces in electrocatalytic systems. The ammonium head groups serve as ionic reservoirs that preconcentrate bicarbonate counterions at the surface of nanocatalysts, while the hydrophobic polymer backbones restructure local hydrogen‐bonding networks, modulating water and ion transport dynamics. These interfacial effects promote CO2electroreduction, particularly under diffusion‐limited conditions, resulting in a CO Faradaic efficiency (FE) exceeding 90%. 
    more » « less
    Free, publicly-accessible full text available September 22, 2026
  2. We report a new design of polymer phenylacetylene (PA) ligands and the ligand exchange methodology for colloidal noble metal nanoparticles (NPs). PA-terminated poly(ethylene glycol) (PEG) can bind to metal NPs through acetylide (M-CC-R) that affords a high grafting density. The ligand−metal interaction can be switched between σ bonding and extended π backbonding by changing grafting conditions. The σ bonding of PEG−PA with NPs is strong and it can compete with other capping ligands including thiols, while the π backbonding is much weaker. The σ bonding is also demonstrated to improve the catalytic performance of Pd for ethanol oxidation and prevent surface absorption of the reaction intermediates. Those unique binding characteristics will enrich the toolbox in the control of colloidal surface chemistry and their applications using polymer ligands. 
    more » « less